mPOR enables completely new research in the field of electroporation:

Determination of the Impact of High-Intensity Pulsed
Electromagnetic Fields on the Release of Damage-Associated
Molecular Pattern Molecules

High-Intensity Pulsed Electromagnetic Fields (HI-PEMF) treatment is an emerging noninvasive and contactless alternative to conventional electroporation, since the electric field inside the tissue is induced remotely by an externally applied pulsed magnetic field. Recently, HI-PEMF has been successfully used in the transfer of plasmid DNA and siRNA in vivo, with no or minimal infiltration of immune cells. In addition to gene electrotransfer, treatment with HI-PEMF has also shown potential for electrochemotherapy, where activation of the immune response contributes to the treatment outcome. The immune response can be triggered by immunogenic cell death that is characterized by the release of damage-associated molecular patterns (DAMPs) from damaged or/and dying cells. In this study, the release of the best-known DAMP molecules, i.e., adenosine triphosphate (ATP), calreticulin and high mobility group box 1 protein (HMBG1), after HI-PEMF treatment was investigated in vitro on three different cell lines of different tissue origin and compared with conventional electroporation treatment parameters. We have shown that HI-PEMF by itself does not cause the release of HMGB1 or calreticulin, whereas the release of ATP was detected immediately after HI-PEMF treatment. Our results indicate that HI-PEMF treatment causes no to minimal release of DAMP molecules, which results in minimal/limited activation of the immune response.

 Dynamics of cell death due to electroporation using different pulse parameters as revealed by different viability assays

The mechanisms of cell death due to electroporation are still not well understood. Recent studies suggest that cell death due to electroporation is not an immediate all-or-nothing response but rather a dynamic process that occurs over a prolonged period of time. To investigate whether the dynamics of cell death depends on the pulse parameters or cell lines, we exposed different cell lines to different pulses [monopolar millisecond, microsecond, nanosecond, and high-frequency bipolar (HFIRE)] and then assessed viability at different times using different viability assays. The dynamics of cell death was observed by changes in metabolic activity and membrane integrity. In addition, regardless of pulse or cell line, the dynamics of cell death was observed only at high electroporation intensities, i.e., high pulse amplitudes and/or pulse number. Considering the dynamics of cell death, the clonogenic assay should remain the preferred viability assay for assessing viability after electroporation.

Muscle contractions and pain sensation accompanying high‑frequency electroporation pulses

To minimize neuromuscular electrical stimulation during electroporation-based treatments, the replacement of long monophasic pulses with bursts of biphasic high-frequency pulses in the range of microseconds was suggested in order to reduce muscle contraction and pain sensation due to pulse application. This treatment modality appeared under the term high-frequency electroporation (HF-EP), which can be potentially used for some clinical applications of electroporation such as electrochemotherapy, gene electrotransfer, and tissue ablation. In cardiac tissue ablation, which utilizes irreversible electroporation, the treatment is being established as Pulsed Field Ablation. While the reduction of muscle contractions was confrmed in multiple in vivo studies, the reduction of pain sensation in humans was not confrmed yet, nor was the relationship between muscle contraction and pain sensation investigated. This is the frst study in humans examining pain sensation using biphasic high-frequency lectroporation pulses. Twenty-fve healthy individuals were subjected to electrical stimulation of the tibialis anterior muscle with biphasic high-frequency pulses in the range of few microseconds and both, symmetric and asymmetric interphase and interpulse delays. Our results confrm that biphasic high-frequency pulses with a pulse width of 1 or 2 µs reduce muscle contraction and pain sensation as opposed to currently used longer monophasic pulses. In addition, interphase and interpulse delays play a signifcant role in reducing the muscle contraction and/or pain sensation. The study shows that the range of the optimal pulse arameters may be increased depending on the prerequisites of the therapy. However, further evaluation of the biphasic pulse protocols presented herein is necessary to confrm the efciency of the newly proposed HF-EP.

Immunogenic cell death in electroporation-based therapies depends on pulse waveform characteristics

Traditionally, electroporation-based therapies such as electrochemotherapy (ECT), gene electrotransfer (GET) and irreversible electroporation (IRE) are performed with different but typical pulse durations—100 microseconds and 1–50 milliseconds. However, recent in vitro studies have shown that ECT, GET and IRE can be achieved with virtually any pulse duration (millisecond, microsecond, nanosecond) and pulse type (monopolar, bipolar-HFIRE), although with different efficiency. In electroporation-based therapies, immune response activation can affect treatment outcome, and the possibility of controlling and predicting immune response could improve the treatment. In this study, we investigated if different pulse durations and pulse types cause different or similar activations of the immune system by assessing DAMP release (ATP, HMGB1, calreticulin). Results show that DAMP release can be different when different pulse durations and pulse types are used. Nanosecond pulses seems to be the most immunogenic, as they can induce the release of all three main DAMP molecules—ATP, HMGB1 and calreticulin. The least immunogenic seem to be millisecond pulses, as only ATP release was detected and even that assumingly occurs due to increased permeability of the cell membrane. Overall, it seems that DAMP release and immuneresponse in electroporation-based therapies can be controlled though pulse duration.

Efficient Gene Transfection by Electroporation—In Vitro and In Silico Study of Pulse Parameters

Gene electrotransfer (GET) is a widely used method for nucleic acids’ delivery into cells. We explored, evaluated, and demonstrated the potential use of different pulse durations for introducing plasmid DNA (pDNA) into cells in vitro and compared the efficiency and dynamics of transgene expression after GET. We performed experiments on cell suspensions of 1306 fibroblasts and C2C12 myoblasts with four ranges of pulse durations (nanosecond, high frequency bipolar (HF-BP), and micro- and millisecond). Six different concentrations of pDNA encoding green fluorescent protein were used. We show that GET can be achieved with nanosecond pulses with a low pulse repetition rate (10 Hz). The GET’s efficiency depends on the pDNA concentration and cell line. Time dynamics of transgene expression are comparable between millisecond, microsecond, HF-BP, and nanosecond pulses but depend greatly on cell line. Lastly, based on the data obtained in the experiments of pDNA concentration effect on GET the model of the probability of pDNA and cell membrane contact during GET was developed. The model shows that pDNA migration is dominated by diffusion for nanosecond and HF-BP pulses and by electrophoresis for micro- and millisecond pulses. Modeling results can provide valuable guidance for further experiments and interpretations of the results obtained by various pulse protocols.